A collaboration of CNAM members including Richard L. Greene and Tarapada Sarkar, together with researchers from SLAC, ESRF, CNR-Spin and Binghamton University, has been exploring the Three-dimensional collective charge excitations in electron-doped copper oxide superconductors.
High-temperature copper oxide superconductors consist of stacked CuO2 planes, with electronic band structures and magnetic excitations that are primarily two-dimensional, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state, within a limited range of momenta accessible by optics. In this research, we used resonant inelastic X-ray scattering to RIXS explore the charge dynamics across all three dimensions of the Brillouin zone. Polarization analysis of recently discovered collective excitations (modes) in electron-doped copper oxides reveals their charge origin, that is, without mixing with magnetic components. The excitations disperse along both the in-plane and out-of-plane directions, revealing its three-dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the distance between neighboring CuO2 planes rather than to the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction is responsible for the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought ‘acoustic plasmon’, which is a branch of distinct charge collective modes predicted for layered systems and argued to play a substantial part in mediating high-temperature superconductivity.
This work is now published October 31, 2018 in Nature. https://www.nature.com/articles/s41586-018-0648-3/#auth-1